

Boletín mensual Vigilancia Volcánica de Tenerife MARZO 2017

El Instituto Volcanológico de Canarias (INVOLCAN) es una entidad demandada unánimemente por el Senado (2005), Parlamento de Canarias (2006), Asamblea General de la Federación Canaria de Municipios, FECAM (2008), Congreso de los Diputados (2009) y la Asamblea General de la Federación Canaria de Islas, FECAI (2014), que instan a la Administración General del Estado y de la Comunidad Autónoma de Canarias, así como a los Cabildos Insulares, a la apuesta conjunta de todos los recursos humanos y técnicos que las diferentes administraciones públicas Españolas destinan a la gestión científica del riesgo volcánico en España con la finalidad de garantizar una coordinación efectiva y eficiente para contribuir al fortalecimiento de las acciones destinadas a la reducción del riesgo volcánico en España; dígase Canarias, la única región volcánicamente activa del territorio nacional con riesgo volcánico. Desde finales de 2010 el INVOLCAN es una realidad gracias a la implicación del Cabildo Insular de Tenerife, estando a la espera de la participación del resto de las administraciones públicas.

Introducción

En el presente boletín se presentan los datos registrados por las redes instrumentales permanentes y las campañas científicas periódicas de observación para la monitorización de la actividad volcánica en Tenerife correspondientes al mes de marzo 2017. Los boletines mensuales de INVOLCAN serán publicados a principios de cada mes reflejando la actividad del mes anterior. El copyright de los datos y de las elaboraciones mostradas en el presente boletín es propiedad intelectual de INVOLCAN. Solo está permitida exclusivamente la difusión del presente boletín en su totalidad. La autorización a la publicación parcial, también en forma elaborada, debe ser solicitada previamente a INVOLCAN mediante correo electrónico (involcan@gmail.com). La fuente de los datos sísmicos anteriores al 21/11/2016, fecha en que ha entrado en plena operatividad la Red Sísmica Canaria gestionada por INVOLCAN, proceden de la página web del Instituto Geográfico Nacional, IGN. Los datos mostrados en el presente boletín podrían estar sujetos a futuras revisiones. Se declina cualquier responsabilidad derivada de un uso inadecuado de la información aquí presentada.

Resumen

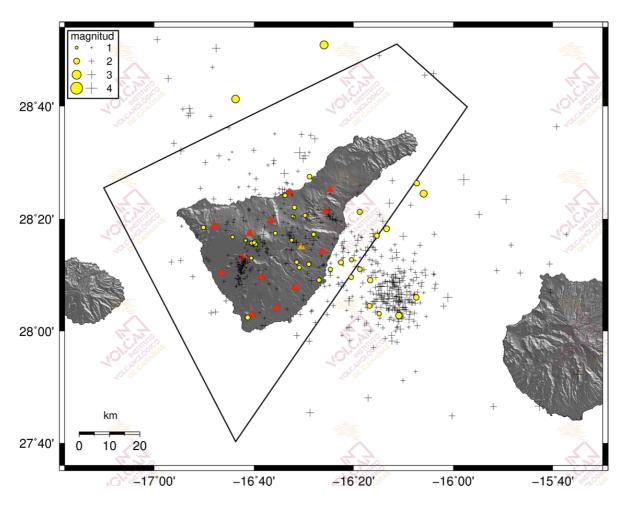
- En el mes de febrero de 2017, la Red Sísmica Canaria ha registrado 39 terremotos de pequeña magnitud,
 M_{max}=2.7, en la isla de Tenerife y sus alrededores.
- Los valores de temperatura de las fumarolas del Teide y de la estación termométrica TFT01, no muestran tendencias significativas.
- La Red GPS Canaria (ITER-GRAFCAN-Universidad de Nagoya) que opera el INVOLCAN no ha registrado desplazamientos horizontales y verticales significativos.
- En el mes de marzo 2017 las campañas científicas periódicas de observación sobre emisión difusa de CO₂ en el cráter del Teide reflejan una tendencia descendente de la misma, registrando valores de 67±11 toneladas diarias (t/d), después de alcanzar en febrero 2017 valores de 175 toneladas diarias; los mayores valores registrados en toda la serie. El resto de los parámetros geoquímicos que se presentan en este informe no muestran variaciones significativas durante el mes de marzo 2017.

Valoración

La tendencia ascendente, de aproximadamente 4 meses, observada en la emisión difusa de dióxido de carbono (CO₂), emanaciones no visibles al ojo humano, en el cráter del Teide se ha invertido durante el mes de marzo. Las variaciones observadas en el último mes indican que este episodio de presurización del sistema volcánico-hidrotermal, probablemente vinculado a la inyección de gases de origen magmático en el sistema, está en fase de conclusión. La ausencia de deformaciones significativas del terreno hace poco probable la implicación directa de un sistema magmático superficial.

A corto plazo, no se puede excluir el repetirse de otros episodios de presurización del sistema volcánico-hidrotermal. Además podría tener lugar la ocurrencia de otros terremotos de pequeña magnitud, de entidad parecida al ocurrido el 6 de enero. Por otra parte, puede excluirse la ocurrencia de terremotos capaces de generar daños a corto plazo. El registro de un incremento en la emisión difusa de dióxido de carbono (CO₂), en el cráter del Teide ha sido y son de interés científico para el fortalecimiento del sistema de alerta temprana, pero no ha representado ni representa peligro alguno para las personas que acceden diariamente al Pico del Teide.

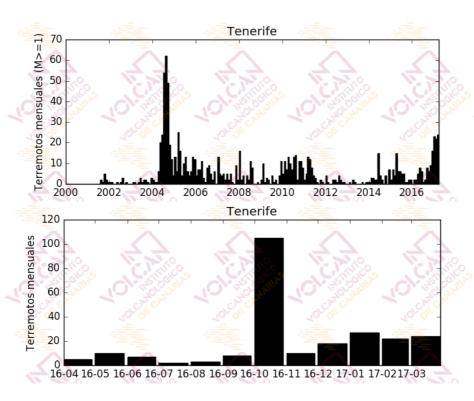
Recordar que en la actualidad el semáforo volcánico para Tenerife se encuentra en posición **VERDE**; por lo tanto, según el Plan Especial de Protección Civil y Atención de Emergencias por Riesgo Volcánico en la Comunidad Autónoma de Canarias (PEVOLCA), **los residentes y visitantes en la isla pueden desarrollar sus actividades con absoluta normalidad**.

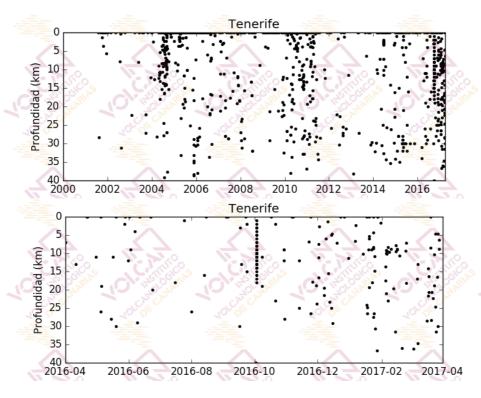

1 - Sismología

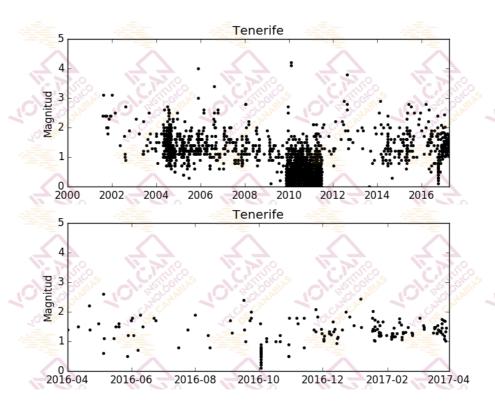
Durante marzo de 2017, la Red Sísmica Canaria (Fig. 1.1) ha estado en funcionamiento con una media de 13 estaciones operativas. Todos los hipocentros han sido relocalizados manualmente. La incertidumbre en las localizaciones hipocentrales es generalmente de unos pocos kilómetros, mientras que en las magnitudes es de alrededor de 0.2 unidades.

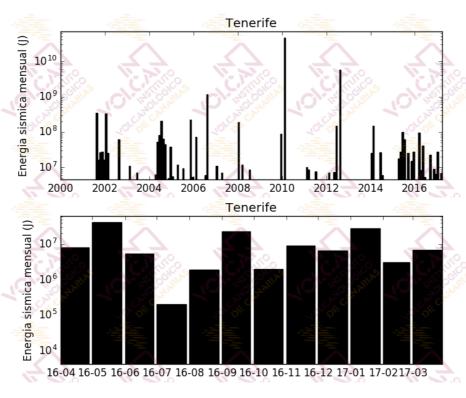
Los hipocentros de los **39** terremotos determinados por la Red Sísmica Canaria durante marzo de 2017 han sido localizados en su práctica totalidad debajo de la isla de Tenerife (Fig. 1.1). La magnitud máxima observada ha sido de **2.7**, asociada al evento del 24/3/2017 a las 01:44, localizado unos 35 km norte de la isla de Tenerife.

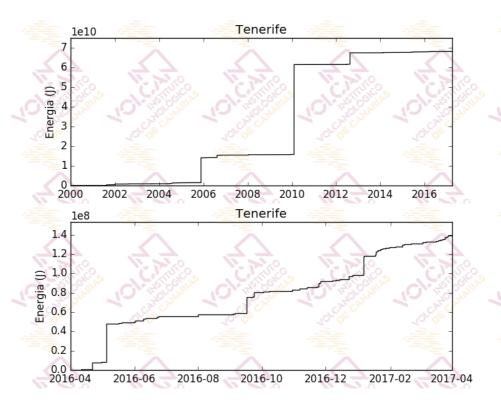
En marzo 2017, el número de terremotos (Fig. 1.2), sus profundidades (Fig. 1.3), sus magnitudes (Fig. 1.4) y la energía sísmica (Fig. 1.5, 1.6), no muestran ninguna variación significativa.


El calculo de las variaciones relativas de velocidad sísmica, a través de interferometría del ruido sísmico, no ha detectado variaciones mayores de $\pm 0.05\%$ (Fig. 1.7).


Figura 1.1 - Hipocentros de los terremotos localizados por la Red Sísmica Canaria (triángulos rojos) en marzo de 2017 (círculos amarillos). Las cruces muestran los hipocentros localizados en los últimos 12 meses. El polígono negro corresponde al área de Tenerife considerada para las estadísticas sismológicas en los gráficos siguientes. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].


Figura 1.2 - Número de terremotos mensuales en Tenerife. El histograma superior corresponde al periodo enero 2000-marzo 2017 para terremotos con M≥1, mientras que el inferior muestra el periodo abril 2016-marzo 2017 para todas las magnitudes. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].


Figura 1.3 - Profundidades de los hipocentros localizados en el área de Tenerife. El gráfico superior corresponde al periodo enero 2000-marzo 2017, mientras que el inferior muestra el periodo abril 2016-marzo 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].


Figura 1.4 - Magnitudes de los terremotos localizados en el área de Tenerife. El gráfico superior corresponde al periodo enero 2000-marzo 2017, mientras que el inferior muestra el periodo abril 2016-marzo 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

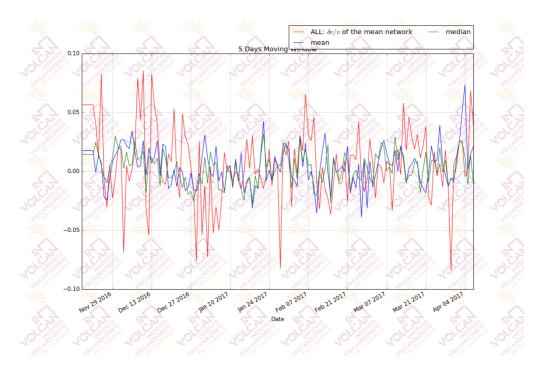
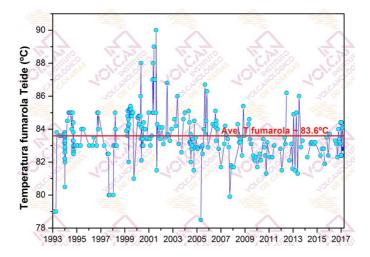
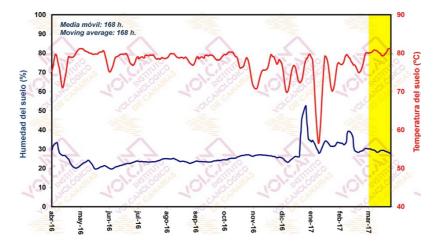

Figura 1.5 – Energía sísmica liberada por los terremotos localizados en el área de Tenerife. El histograma superior corresponde al periodo enero 2000-marzo 2017, mientras que el inferior muestra el periodo abril 2016-marzo 2017. [la fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional].

Figura 1.6 - Curva de energía sísmica acumulada por los terremotos localizados en el área de Tenerife. El gráfico superior corresponde al periodo enero 2000-marzo 2017, mientras que el inferior muestra el periodo abril 2016-marzo 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

Figura 1.7 - Variaciones de velocidad relativa (% dv/v) medidas por interferometría sísmica (software MSNoise) desde noviembre 2016 hasta marzo 2017.


 Tabla 1.1 - Hipocentros localizados por la Red Sísmica Canaria en marzo de 2017 y mostrados en la Figura 1.1.

Fecha (UTC)	Magnitud	Latitud (°N)	Longitud (°W)	Profundidad (km)
2017-03-03 18:54	1.8	28.3543	-16.3130	36.2
2017-03-07 04:17	1.5	28.3673	-16.5312	17.0
2017-03-07 14:12	1.5	28.1990	-16.4831	34.6
2017-03-07 21:28	1.4	28.2875	-16.4669	13.0
2017-03-09 06:01	1.9	28.1005	-16.1237	0.0
2017-03-09 14:32	2.2	28.0462	-16.1819	0.1
2017-03-10 05:51	1.5	28.0521	-16.2478	8.1
2017-03-12 05:55	1.6	28.1604	-16.3413	26.3
2017-03-16 20:45	1.3	28.2615	-16.6746	28.5
2017-03-17 18:38	1.5	28.2653	-16.6648	14.1
2017-03-17 23:37	1.4	28.1892	-16.5151	21.7
2017-03-18 05:38	1.5	28.1838	-16.4110	16.3
2017-03-18 17:31	1.5	28.4029	-16.5626	20.6
2017-03-19 06:39	1.8	28.1514	-16.2780	0.0
2017-03-19 23:41	1.9	28.4391	-16.1216	0.0
2017-03-20 02:32	1.3	28.2702	-16.5408	8.5
2017-03-20 03:48	1.3	28.2172	-16.6758	0.0
2017-03-20 18:46	1.5	28.1516	-16.4492	28.4
2017-03-21 13:20	1.4	28.2051	-16.5239	20.6
2017-03-22 13:15	1.3	28.3439	-16.4958	22.4
2017-03-23 04:34	2.4	28.4082	-16.0989	0.0
2017-03-23 14:00	1.3	28.2629	-16.6662	18.9
2017-03-23 14:38	1.4	28.2583	-16.6608	10.4
2017-03-24 01:44	2.7	28.8479	-16.4323	25.2
2017-03-25 00:10	1.7	28.2044	-16.3757	24.7
2017-03-25 01:26	1.6	28.4586	-16.4809	75.2
2017-03-25 02:02	1.5	28.2123	-16.3405	4.6
2017-03-25 07:33	2.6	28.6881	-16.7283	29.8
2017-03-25 18:56	1.2	28.2795	-16.7382	31.5
2017-03-26 17:37	1.7	28.2836	-16.2554	16.5
2017-03-27 00:46:04	1.1	28.2692	-16.6948	30.0
2017-03-27 00:46:35	1.2	28.3392	-16.5336	4.7
2017-03-27 23:12	1.7	28.0405	-16.6875	41.3
2017-03-28 05:06	1.7	28.0753	-16.2802	18.7
2017-03-28 06:04	1.3	28.2909	-16.5951	8.9
2017-03-28 12:30	1.0	28.3411	-16.5374	6.3
2017-03-28 22:02	1.6	28.1840	-16.3125	5.5
2017-03-29 02:35	1.5	28.3078	-16.8358	42.5
2017-03-30 12:23	2.0	28.3042	-16.2229	0.2



2 - Termometría y termografía

En el mes de marzo de 2017, la monitorización termométrica para la vigilancia volcánica de Tenerife se realizó a través de (i) las estaciones que conforman la Red Termométrica Canaria existentes en la isla, (ii) la estación instrumental permanente del Consejo Insular de Aguas de Tenerife existente en el sondeo de Montaña Majúa y (iii) las campañas científicas periódicas de observación sobre el flujo de calor y la temperatura en la fumarola del cráter del Teide (TEF1). En este boletín se pueden observar los valores de la temperatura de las fumarolas del Teide y la temperatura a 40 centímetros de profundidad en la estación termométrica TFT01 (Pico del Teide). Los valores de temperatura registrados en las fumarolas del Teide durante el mes de marzo no varían significativamente de los valores medios observados desde 1993 (Fig. 2.1). Las temperaturas registradas por la estación termométrica TFT01, presentan oscilaciones entre valores de 79-81°C, sin observar tendencias significativas (Fig. 2.2).

Figura 2.1 – Variaciones temporales de la temperatura registrada en la fumarola del Teide (TEF1) desde 1993. Los datos de marzo de 2017 se marcan en azul oscuro.

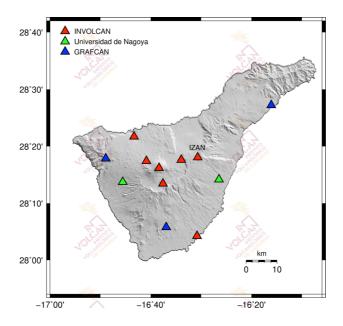
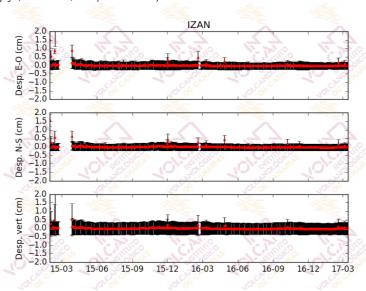


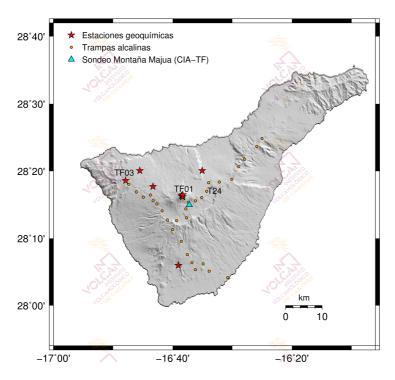
Figura 2.2 – Variaciones temporales de la media móvil semanal relacionada con el registro en modo continuo de la humedad (azul) y la temperatura (rojo) a 40 centímetros de profundidad en estación termométrica TFT01 (Pico del Teide, Tenerife). Los datos de marzo de 2017 se encuentran indicados por el área amarilla.



3 - Geodesia

En el mes de marzo de 2017, la monitorización geodésica para la vigilancia volcánica en Tenerife se ha realizada a través de la Red GPS Canaria en Tenerife que cuenta con 12 estaciones GPS diferenciales permanentes, de las cuales 2 son de la Universidad de Nagoya, 3 de GRAFCAN y 7 de ITER/INVOLCAN (Fig. 3.1). Ninguna de las estaciones ha registrado desplazamientos verticales u horizontales significativos; dígase más alto de la incertidumbre experimental. En este boletín se muestran los datos de la estación GPS de Izaña (IZAN) (Fig. 3.2).

Figura 3.1 – Red GPS Canaria en la Isla de Tenerife compuesta por 12 estaciones GPS diferenciales permanentes (Universidad de Nagoya, GRAFCAN, ITER/INVOLCAN)


Figura 3.2 – Series temporales de los desplazamientos verticales y horizontales registrados por la estación GPS IZAN (Izaña). El valor medio y la incertidumbre para cada día se indican en rojo y negro, respectivamente.

4 - Geoquímica

En el mes de marzo de 2017, la monitorización geoquímica para la vigilancia volcánica en Tenerife se ha realizado a través de (i) la Red Geoquímica Canaria que en la Isla de Tenerife cuenta con 7 estaciones instrumentales permanentes, (ii) la estación instrumental permanente del Consejo Insular de Aguas de Tenerife existente en el sondeo de Montaña Majúa, (iii) una red de observación y medida semanal del flujo difuso de dióxido de carbono (CO₂) compuesta por 24 trampas alcalinas, (iv) campañas científicas periódicas de observación sobre emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide, y (v) el seguimiento y medida de la composición química e isotópica de las fumarolas en el cráter del Teide (Fig. 4.1).

En este boletín se muestran datos relacionados con (a) el flujo difuso de dióxido de carbono (CO₂) de la estación geoquímica TFG01 (Pico del Teide) (Fig. 4.2), (b) la emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide (Fig. 4.3), (c) el flujo difuso de dióxido de carbono (CO₂) registrado en las estaciones de la Red de Trampas Alcalinas de los sistemas volcánicos Dorsal Noroeste de Tenerife (Fig. 4.4), Dorsal Noreste de Tenerife (Fig. 4.5), Dorsal Norte-Sur de Tenerife (Fig. 4.6) y caldera de Las Cañadas (Fig. 4.7), (d) algunas relaciones geoquímica de las fumarolas del Teide (Fig. 4.8) y (e) algunos parámetros físico-químicos de las aguas subterráneas que se monitorizan en la estación geoquímica TFG03 (Fig.4.9).

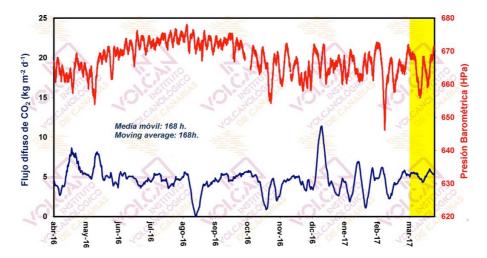
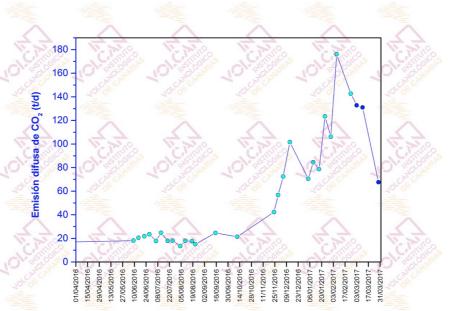


Figura 4.1 – Mapa de localización de las estaciones de la Red Geoquímica Canaria y de la Red de Trampas Alcalinas en la Isla de Tenerife así como de la estación instrumental permanente del sondeo del Consejo Insular de Aguas de Tenerife en Montaña Majua.


Desde noviembre de 2016 se evidencia una clara tendencia ascendente en la tasa de emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide (Fig. 4.3). En marzo de 2017 se ha observado un cambio de tendencia mostrando durante este mes una tendencia descendiente de esta emisión. El último registro del mes de marzo de

2017 fue **67 toneladas diarias** (t/d). En el mes anterior esta tasa de emisión alcanzó los 175 toneladas diarias; el mayor valor registrado durante todo el periodo de observación desde que se comenzaron a realizar las campañas científicas periódicas de observación sobre este parámetro geoquímico en el cráter del Teide en 1997. El registro del flujo difuso de dióxido de carbono (CO₂) en la estación TFG01 refleja un pico de la media móvil semanal del flujo difuso de dióxido de carbono (CO₂) que alcanza los 11 kilogramos diarios por metro cuadrado (kg/m²/d) en diciembre de 2016 (Fig. 4.2), mientras que el flujo difuso de dióxido de carbono (CO₂) registrado en la Red de Trampas Alcalinas no refleja tendencias claras (Figs. 4.4, 4.5, 4.6 y 4.7). En marzo de 2017 no se observan incrementos significativos de las relaciones CO₂/CH₄, H₂/CO₂ y He/CO₂ en las fumarolas del Teide (Fig. 4.8). Los datos medidos por la estación TFG03 no muestran ninguna tendencia significativa (Fig. 4.9).

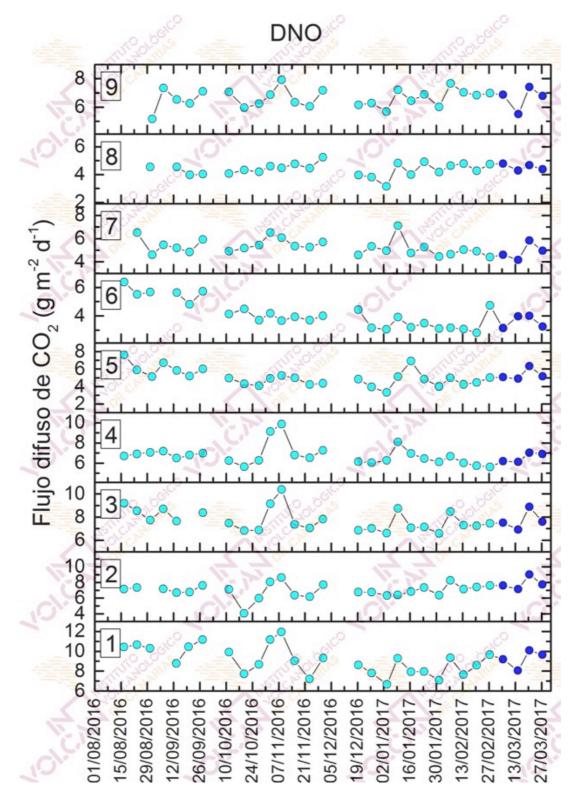

Figura 4.2 - Monitorización de la media móvil semanal del registro en modo continuo del flujo de CO₂ (azul) y la presión barométrica (rojo) de la estación geoquímica TFG01 (Pico del Teide, Tenerife). Los datos de marzo 2017 se encuentran indicados por el área amarilla.

Figura 4.3 – Variaciones temporales de la emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide durante los últimos 12 meses. Los datos de marzo 2017 se encuentran marcados en azul oscuro.

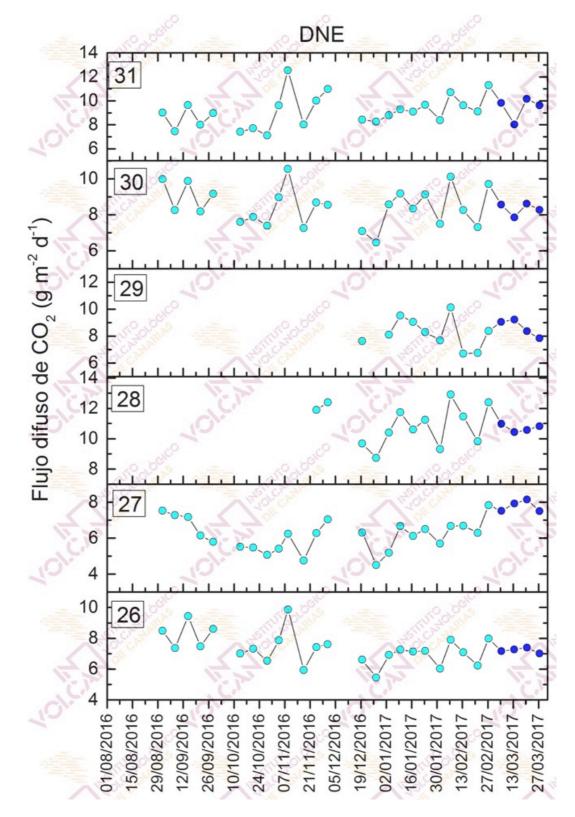


Figura 4.4 – Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas del sistema volcánico Dorsal Noroeste de Tenerife desde agosto de 2016. Los datos de marzo 2017 se encuentran marcados en azul oscuro.

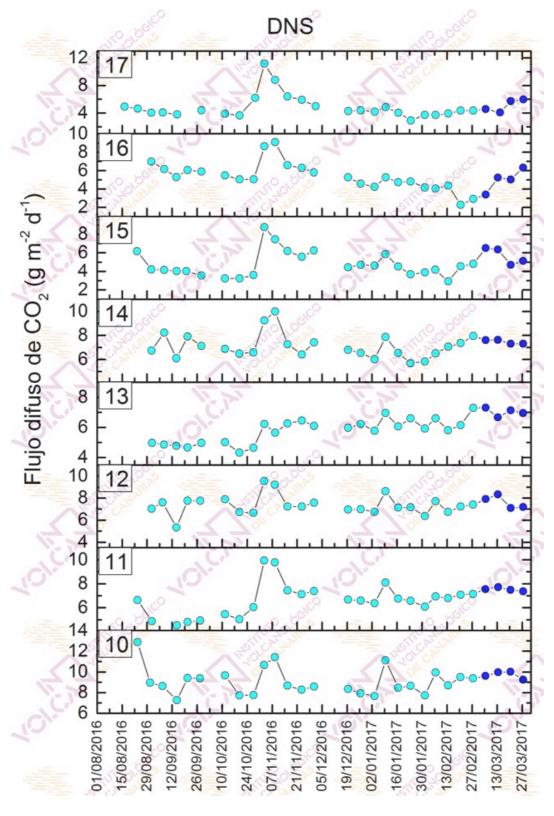


Figura 4.5 — Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas del sistema volcánico Dorsal Noreste de Tenerife desde agosto de 2016. Los datos de marzo 2017 se encuentran marcados en azul oscuro.

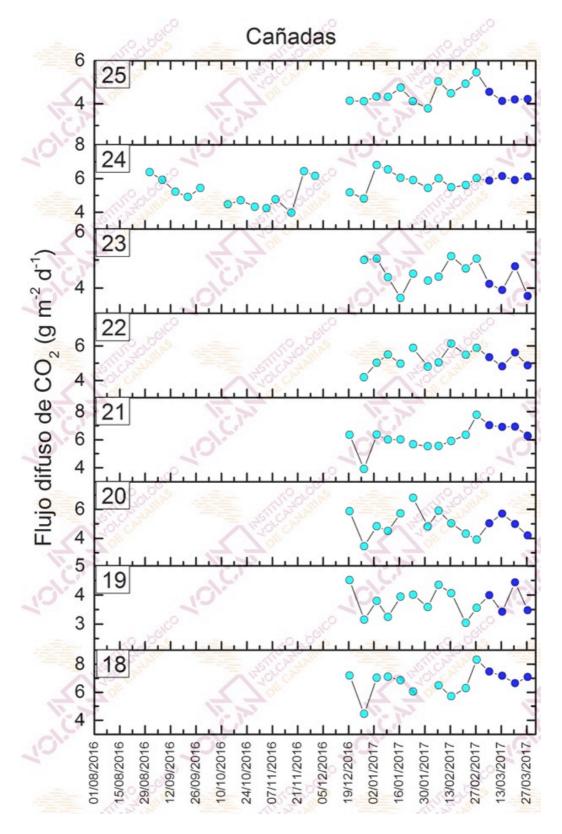
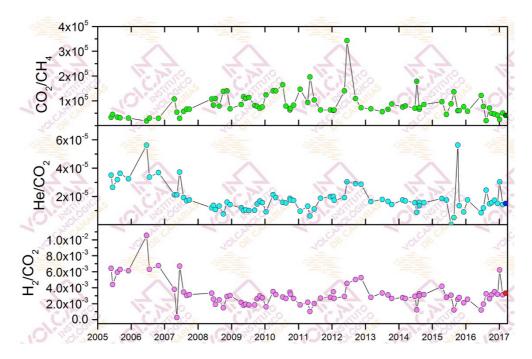


Figura 4.6 – Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas del sistema volcánico Dorsal Norte-Sur de Tenerife desde agosto de 2016. Los datos de marzo 2017 se encuentran marcados en azul oscuro.



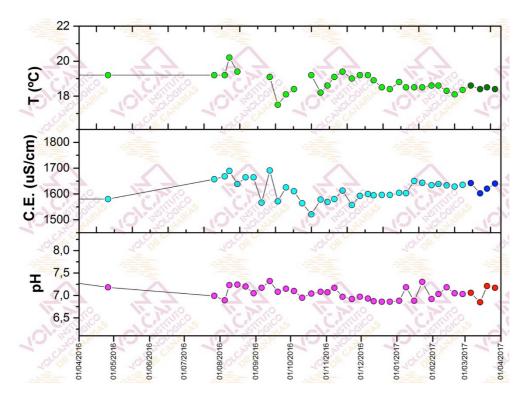

Figura 4.7 – Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas de la Caldera de Las Cañadas principalmente desde diciembre de 2016. Los datos de marzo 2017 se encuentran marcados en azul oscuro.

Figura 4.8 - Variaciones temporales de las relaciones molares CO₂/CH₄, He/CO₂ y H₂/CO₂ en la fumarola del Teide (TEF1). Los datos de marzo 2017 se encuentran indicados en color diferente.

Figura 4.9 - Variaciones temporales de temperatura, conductividad (μS·cm⁻¹) y pH medidas en el agua subterránea de la estación geoquímica TFG03, desde marzo de 2016. Los datos de marzo 2017 se encuentran indicados en color diferente.

Este boletín ha sido elaborado gracias al proyecto al proyecto "MONITORIZACIÓN E INVESTIGACIÓN SOBRE LA ACTIVIDAD VOLCÁNICA DE TENERIFE" co-financiado por el Programa Tenerife Innova 2016-2021 que coordina el Área Tenerife 2030: Innovación, Educación, Cultura y Deportes del Cabildo Insular de Tenerife.

Este boletín ha sido redactado por:

- Nemesio M. Pérez Rodríguez,
 Coordinador Científico del INVOLCAN
- Mar Alonso Cótchico
- Cecilia Amonte López
- María Asensio Ramos
- José Barrancos Martínez
- David Calvo Fernández
- Luca D'Auria
- Marta García Merino
- Rubén García Hernández
- Ernesto García Peirotén
- Pedro A. Hernández Pérez
- Gladys V. Melián Rodríguez
- Cecilia Morales Ocaña
- German D. Padilla Hernández
- Eleazar Padrón González
- Aarón Pérez Martín
- Fátima Rodríguez García
- Takeshi Sagiya
- Verónica Vela Vela