INTERCAMBIO GEOTÉRMICO FUNDAMENTOS Y APLICACIONES.

JORNADAS SOBRE DESARROLLO DE LA GEOTERMIA EN CANARIAS. UNA APUESTA SOSTENIBLE Julio de 2015

iarrizabalaga@telur.es

INTERCAMBIO GEOTÉRMICO/GEOINTERCAMBIO

Aprovechamiento energía térmica acumulada bajo la superficie del terreno.

- Muy baja temperatura (10-30 °C)
- Precisa una elevada eficiencia para su captación

Origen Energía Geotérmica muy baja temperatura

- Flujo geotérmico profundo: 60-100 mW/m² (gradiente geotérmico)
- ❖ Radiación solar absorbida (>45% en los 10 m superiores)
- Flujo agua subterránea. Flujo advectivo

Energía gestionada

- ❖ Energía térmica almacenada en el terreno (≈ 0,65 kWh/m³/K)
- Cargas disipadas refrigeración
- ❖ Recarga/descarga térmica del terreno

FORTALEZAS

- Presencia universal
- Idónea refrigeración
- Sistema ecológico (EPA 1993)
- Coste mínimo ciclo de vida
- Reduce dependencia exterior
- Ahorro energético, reducción de energía primaria y emisiones
- Calefacción y refrigeración simultáneas
- Sin combustión
- Laminación puntas demanda eléctrica
- Montaje en interior, sin torres, ruido o isla urbana
- No afectado por legionella
- Generación distribuida, por definición
- Sin huella exterior
- No deslocaliza industria
- Integra acumulación energía térmica.

DEBILIDADES

- ✓ Elevado coste de inversión: recuperación 5-15 años
- ✓ Habitualmente precisa bomba de calor
- ✓ Limitación temperatura uso: 55 °C 65 °C
- ✓ Incremento complejidad instalación
- ✓ Inversión invisible
- ✓ Afecciones e interferencias = retrasos en fase de obras.
- ✓ Requiere puesta en marcha minuciosa y atención post-venta especializada
- ✓ Desconocimiento, especialmente en nuestro País.

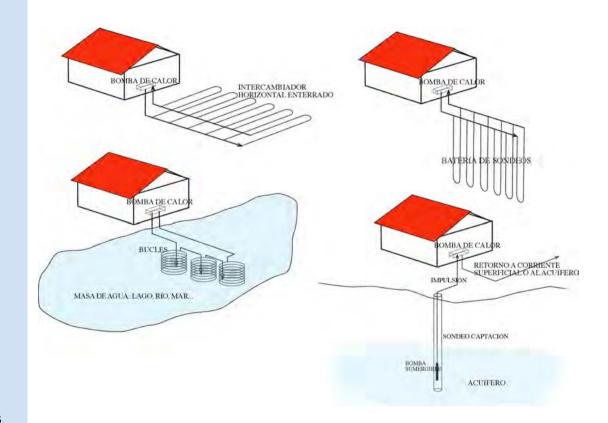
PRINCIPALES PAÍSES

COUNTRY	NUMBER OF INSTALLATIO NS	TOTAL POWER (MW)	AVERAGE POWER (kW)	RENEWABLE ENERGY (ktep/y)
SWEDEEN	407.000	4.314	10,6	979
GERMANY	243.978	3.000	12,3	319
FRANCE	162.303	1.785	11,0	233
DENMARK	20.000	160	8,0	40,6
FINLAND	74.187	1.372	18,5	275
AUSTRIA	66.204	740	11,6	75
NEETHERLANDS	35.065	864	24,6	86,9
WHOLE EU27 2011 (1)	1.133.490	13.998	12,3	2.231
SWITERLAND (2)	60.000	1.022	17	-
USA (3)	1.000.000	12.000	12	-
CANADA ⁽⁴⁾	55.000	435	7,9	-
CHINA ⁽⁵⁾	≈ 350.000	5.200	14,9	-

- (1) Fuente: EuroObserver (2013) "The State of Renewable Energies in Europe 2012"
 - (2) Datos 2008, Rybach L. & Signorelli 2010
 - (3) Datos 2009, Lund et al 2010
 - (4) Datos 2008. Thomson A, 2010
 - (5) Datos 2009. Zheng K. Et al. 2010

EVOLUCIÓN POTENCIA ACUMULADA PAÍS VASCO

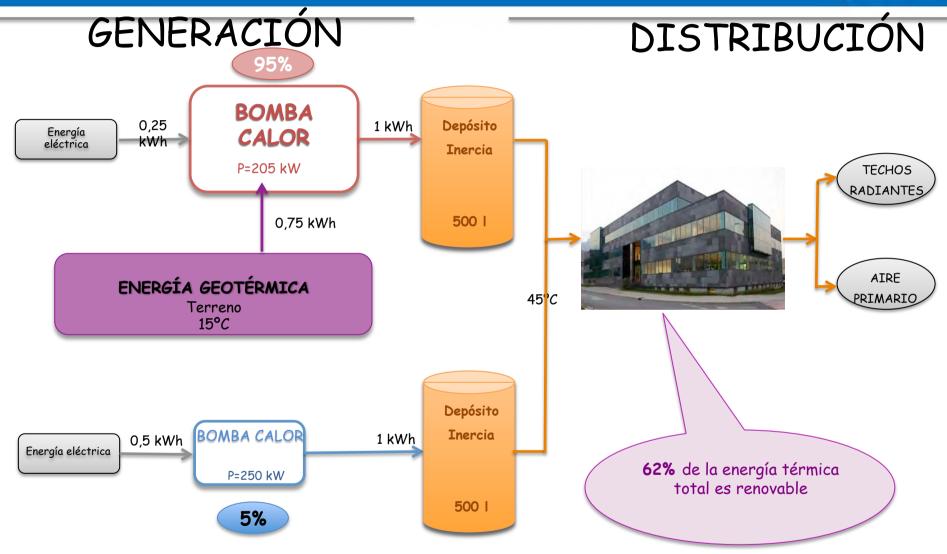
TIPOLOGIAS CIRCUITOS DE INTERCAMBIO GEOTÉRMICO



1 Circuito abierto

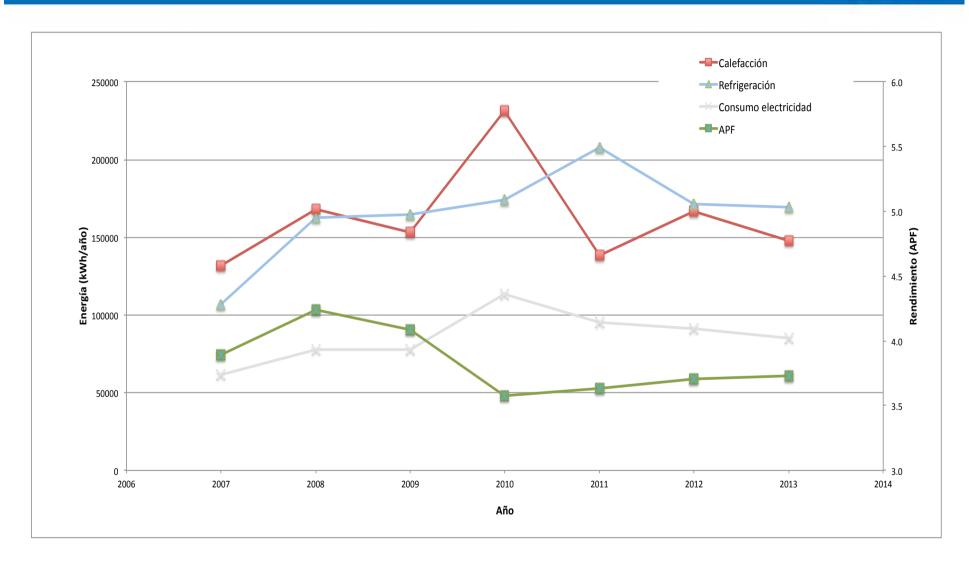
- a. Uso consuntivo térmico
- b. Uso consuntivo en cascada
- c. Uso No consuntivo Reinyección:
 - i. ATES
 - ii. NO ATES
 - iii. SCW
- d. Otra casuística C.A.
 - i. Aguas de achique
 - ii. Acuíferos costeros y submarinos
 - iii. Captación de agua marina
 - iv.

2 Circuito cerrado


- a. Circuito horizontal
- b. Cimentaciones activas
- c. Circuito vertical
- d. Sondeos horizontales dirigidos
- e.

CIM AZTERLAN

RESULTADOS


SISTEMA DE CLIMATIZACIÓN MEDIANTE INTERCAMBIO GEOTÉRMICO PARA EL EDIFICIO DE AZTERLAN

Azterlan eraikinaren klimatizazioak truke La climatización del edificio Azterlan se basa geotermikoko sistema baten du oinarria, bero en un sistema de intercambio geotérmico con bomba de calor y circuito de intercambio punpa bat eta bero-trukerako zirkuitu bertikal cerrado, vertical. La carga punta del edificio itxi batez osatutakoa. Eraikinaren beharren se completa con una bomba de calor puntako karga bero punpa konbentzional convencional (aire-agua), la cuál únicamente batez asetzen da (aire-ura), honek urtean funciona durante 80 h/año. zehar 80 ordu inguruko funtzionamendua du Circuito de intercambio geotérmico 2.780 m 23 sondeos Bajo aparcamiento anexo al edificio Lutitas negras con pasadas de areniscas del Serie atravesada Cretácico inferior 3.750 m^2 Superficie total climatizada Uso Calefacción y refrigeración Sistemas emisores Techo radiante y aire de ventilación Bomba de calor Sistema intercambio Producción mediante sistema bivalente geotérmico aire-agua Pc 205 kW 252 kW Pr 182 kW 252 kW 95% 5% Demandas cubiertas 17.776 kWh/año 337.753 kWh/año Ahorros: Energía primaria 19 TEP/año (Reducción del 52%) 26 t CO₂/año (Reducción del 52%) Reducción emisiones CO₂ Económico 11.879 €/año (Reducción del 52%) Sistema monitorizado

RESULTADOS

RESULTADOS

	Calefacción	Refrigeración	consumo	ASPF
	kWh	kWh	kWh	
2007	131753	106815	61303	3.9
2008	167821	162934	78024	4.2
2009	153,092	164,923	77811	4.1
2010	231,270	174,019	113343	3.6
2011	138,672	207,643	95222	3.6
2012	166,449	171,304	91202	3.7
2013	147,473	169,074	84850	3,7
2014	103.514	177.985	78.155	3,6
Total	1240044	1334697	679910	3.8

POLIDEPORTIVO PORTUGALETE

SISTEMA INTERCAMBIO GEOTÉRMICO

NUEVO POLIDEPORTIVO DE PORTUGALETE PANDO - AISIA

DATOS BÁSICOS

DESCRIPCIÓN INSTALACIÓN

PROMOTOR: DEMUPORSA (Deportiva Municipal de Portugalete)

MATERIAL GEOLÓGICO: Lutitas calcáreas negras

SUPERFICIE CLIMATIZADA: 8.790 M2

USO

- o Climatizadoras
- o Suelo radiante
- o Producción ACS
- Vasos piscinas

SISTEMA TRIVALENTE

- o GEOTÉRMICO: Bomba calor tornillo
- o Calderas gas natural
- o Enfriadoras aire-agua

INTERCAMBIO GEOTÉRMICO

- o P calefacción: 375 kW 51% carga punta
- o P refrigeración: 357 kW 23% carga punta

Circuito 9.250 m = 74 sondeos x 125 m

PUESTA EN MARCHA: Enero 2013

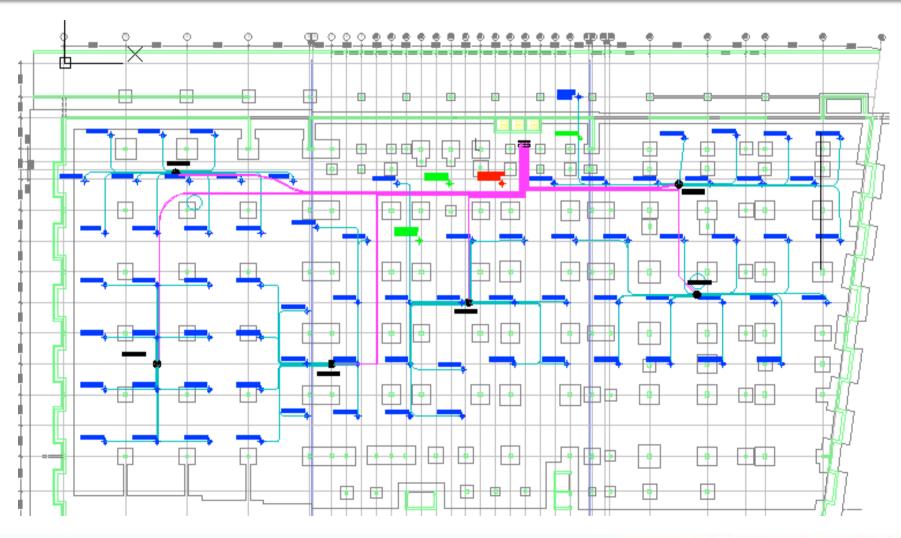
INTERCAMBIADOR GEOTÉRMICO

Sonda simple: PEAD ø 40 PN16 SDR 11

Ensayo TRT

TEMPERATURA 15,4°C CONDUCTIVIDAD 2,15 W/mK

Fluido caloportador: AGUA Rango de trabajo: 5°C-35°C Conductividad relleno > 1,7 W/mK



INTERCAMBIADOR IG

INTERCAMBIADOR EN HUELLA EDIFICIO

INTERCAMBIADOR IG

DESARROLLO PERFORACIONES VISTA OBRA

INTERCAMBIADOR IG

DEMANDA ENERGÉTICA

INVIERNO de OCT 13 a MAY 14 CALEFACCIÓN 1.150 MWh

REFRIGERACIÓN 438 MWh CONSUMO SPF

351 MWhe 4,5

VERANO
de JUN 14
a SEP 14

CALEFACCIÓN 291 MWh

REFRIGERACIÓN 313 MWh **CONSUMO**

SPF

119 MWhe

5,0

ANUAL

ENERGÍA TOTAL 2.190 MWh **CONSUMO**

SPF

470 MWhe

4,7

DEMANDA ENERGÉTICA

INVIERNO 1.1

CALEFACCIÓN 1.150 MWh

CONSUMO

SPF

a MAY 14

REFRIGERACIÓN

351 MWhe

4.5

SIMULTANEIDAD 30%

ANUAL

ENERGÍA TOTAL 2.190 MWh CONSUMO

SPF

470 MWhe

4,7

AHORROS

AHORROS COBERTURA SISTEMA IG

CONVENCIONAL

SISTEMA IG

AHORRO

GN (MWhpcs)

1.880

0

- 1.880

EE (MWe)

280

470

190

COSTE (€)

122.700

42,400

- 80.300

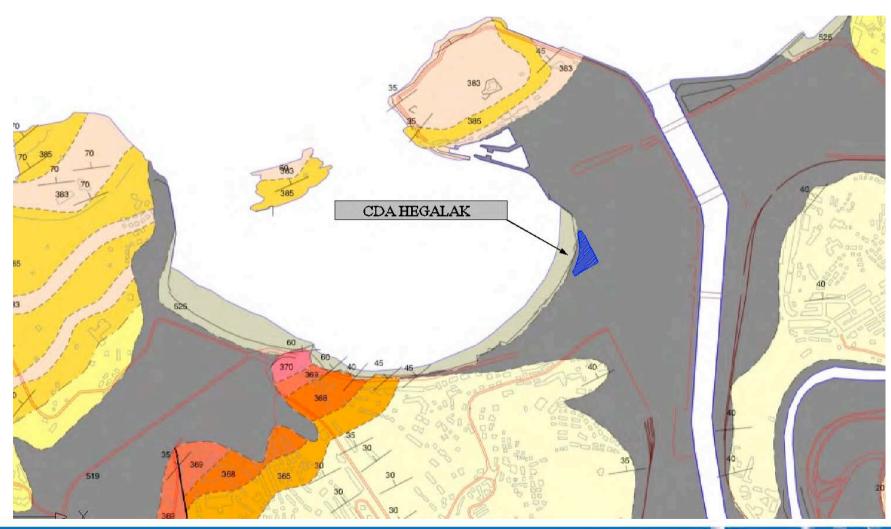
- 65%

AHORRO ECONÓMICO = 80.300 €/AÑO

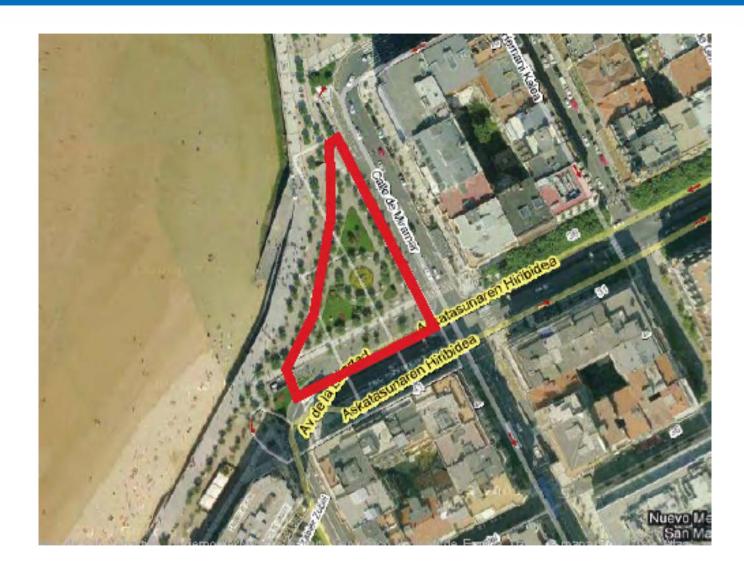
HEGALAK

SISTEMA INTERCAMBIO GEOTÉRMICO

CENTRO DE DEPORTE ADAPTADO HEGALAK DONOSTIA - SAN SEBASTIÁN



CARACTERÍSTICAS


Cartografía geológica con la situación del área del proyecto

CARACTERÍSTICAS

CARACTERÍSTICAS

- √ Solar de 7.650 m²
- ✓ Planta -1 del aparcamiento de la Plaza Cervantes
- ✓ Calentamiento vaso piscina e hidroterapia
- ✓ Carga punta calefacción: 260 kW
- ✓ Carga punta refrigeración: 120 kW
- ✓ Limitaciones urbanísticas:
 - Paseo marítimo de La Concha
 - Entorno urbano de especial protección
 - Sin equipos o instalaciones exteriores
 - oMinimización salidas de aire/gases

SOLUCIÓN ADOPTADA

SOLUCIÓN ADOPTADA

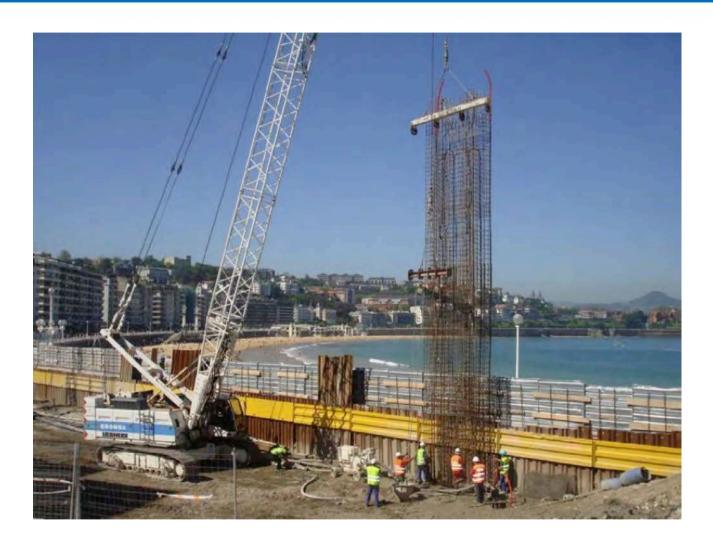
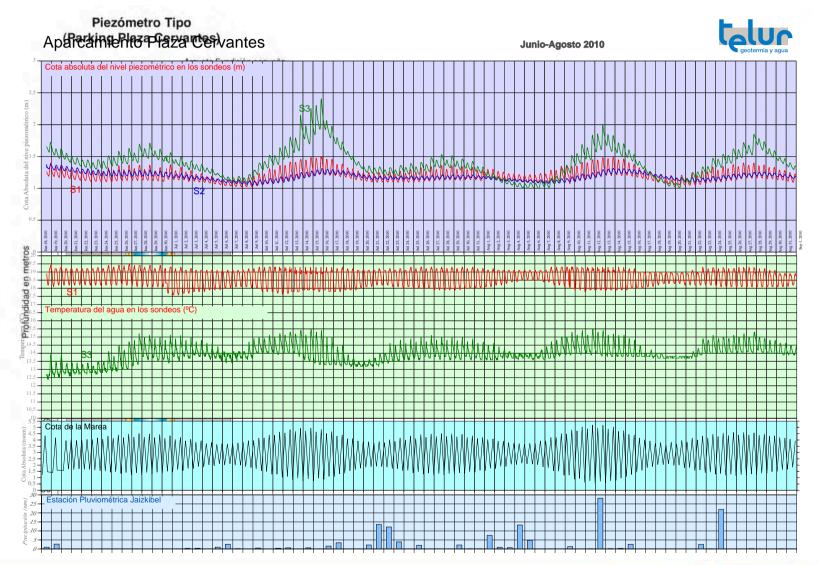



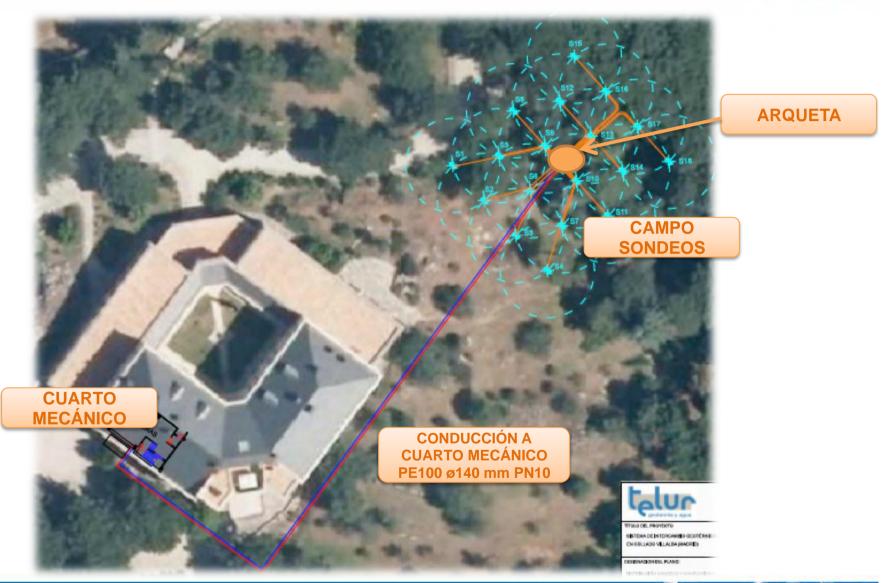
Foto: L.C. Antón

EVOLUCIÓN ACUÍFERO

REHABILITACIÓN RESIDENCIA VILLALBA

- Rehabilitación sistema climatización
 - Alcance: producción frío, calor y ACS
 - o Superficie 3.660 m²
 - Sótano, baja, primera, segunda y ático

- Sistema de producción anterior:
 - o 2 Calderas de gasóleo: P total 450 kW
 - Enfriadora aire-agua: P= 150 kW (R22 a sustituir)
- **Emisores**:
 - o Frío: fan-coils
 - o Calor: RADIADORES



Estado sala calderas previo a la actuación

CIRCUITO INTERCAMBIO GEOTÉRMICO

FUNCIONAMIENTO INVIERNO 2015

Enero, febrero, marzo, abril, mayo 2015

DEMANDA ENERGÍA (5 meses)

CALEFACCIÓN + ACS PROYECTO

OPERACIÓN

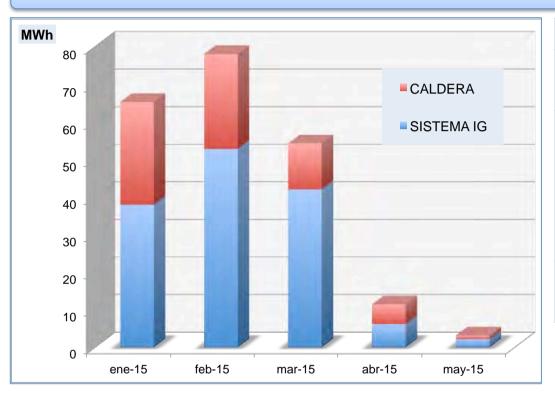
190 MWh

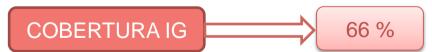
Se estima a partir de consumo de gasóleo

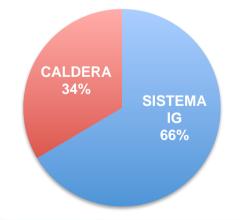
212 MWh

La demanda real cubierta es un 11% superior a la de proyecto.

SISTEMA IG, AGUA SIN GLICOL
TEMPERATURAS DE EVAPORACIÓN 7-10°C

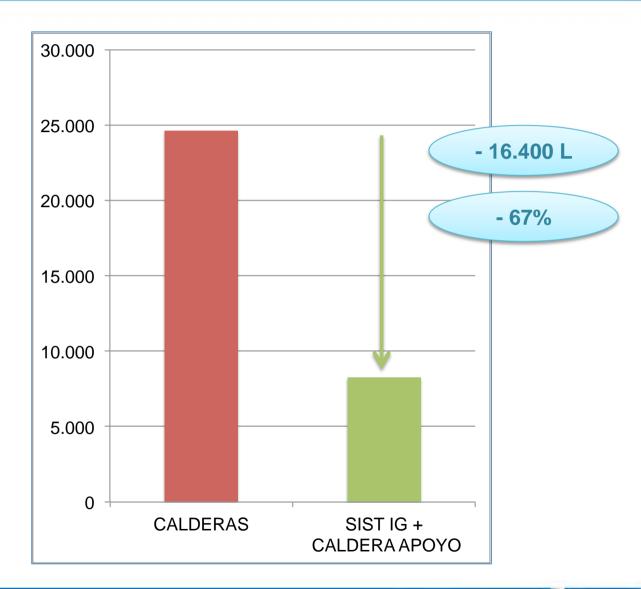

de años anteriores


FUNCIONAMIENTO INVIERNO 2015



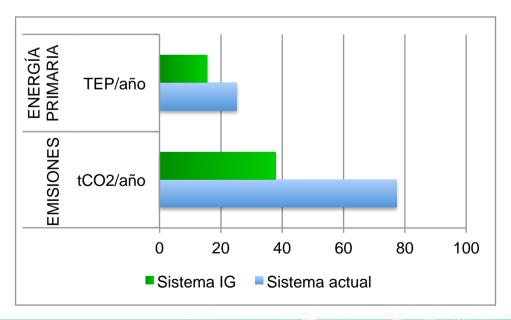
COBERTURA SISTEMA INTERCAMBIO GEOTÉRMICO

CALEFACCIÓN + ACS			
GEOTERMIA	CALDERA TOTAL		
kWht	kWht	kWht	
37.946	27.325	65.271	
52.770	25.309	78.079	
42.040	12.220	54.260	
6.172	5.261	11.433	
2.160	992	3.152	
141.088	71.107	212.195	
66%	34%		



AHORRO GASÓLEO

LITROS



AHORRO ENERGÍA PRIMARIA Y EMISIONES

	EMISIONES	ENERGÍA PRIMARIA
	tCO ₂ /año	TEP/año
SITUACIÓN INICIAL	77	25
SISTEMA IG	38	16
AHORRO	39	10
	51%	39%

INVERSIÓN Y PAYBACK

VIABILIDAD ECONÓMICA	
Inversión (€)	225.000
Costes evitados (Enfriadora nueva) (€)	40.000
Inversión reducida (€)	185.000
Ahorro anual	20.000
Pay-back (años)	9,3
TIR (10 años)	9,2%

OPEN LOOP GSHP IN VALENCIA

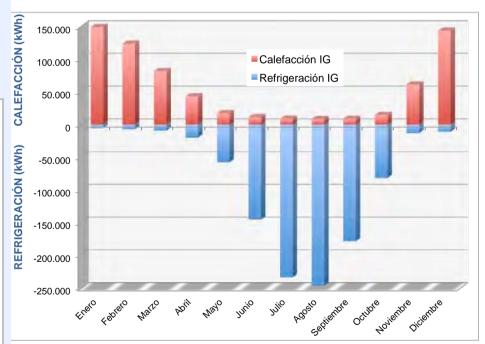
	COBERTURA SISTEMA IG		
	Refrigeración	Calefacción	
	(kWht)	(kWht)	
Enero	5.128	148.845	
Febrero	7.157	123.403	
Marzo	9.100	81.637	
Abril	19.825	43.119	
Mayo	57.510	17.344	
Junio	144.811	11.275	
Julio	233.202	8.913	
Agosto	245.581	8.480	
Septiembre	177.993	8.887	
Octubre	81.570	14.735	
Noviembre	13.023	61.203	
Diciembre	10.942	143.536	
Cobertura sistema IG	1.005.843	671.376	
Demanda total	2.640.457	716.046	
	38%	94%	

Tabla 3. Demanda energética y cobertura geotermia

	Potencia Calefacción (kW)	Potencia Refrigeración (kW)
Caldera 1	270	
Caldera 2	270	
Enfriadora agua-agua 1		671
Enfriadora agua-agua 2		671
Enfriadora agua-agua 3		671
Enfriadora conectada a IG	465	387 (21%)
Potencia instalada	1005	2.400

- √ New warehose in Alfafar, Valencia
- ✓ 38.000 m² climatized surface
- ✓ Strong mediterrenean climatic conditions
- √ Water stressed area
- ✓ HVAC mix
 - GSHP Opel Loop
 - 3 Chiller wh/ adiabatic condensers
 - 3 x 100 m³ ice production tanks
 - 2 NG Burners

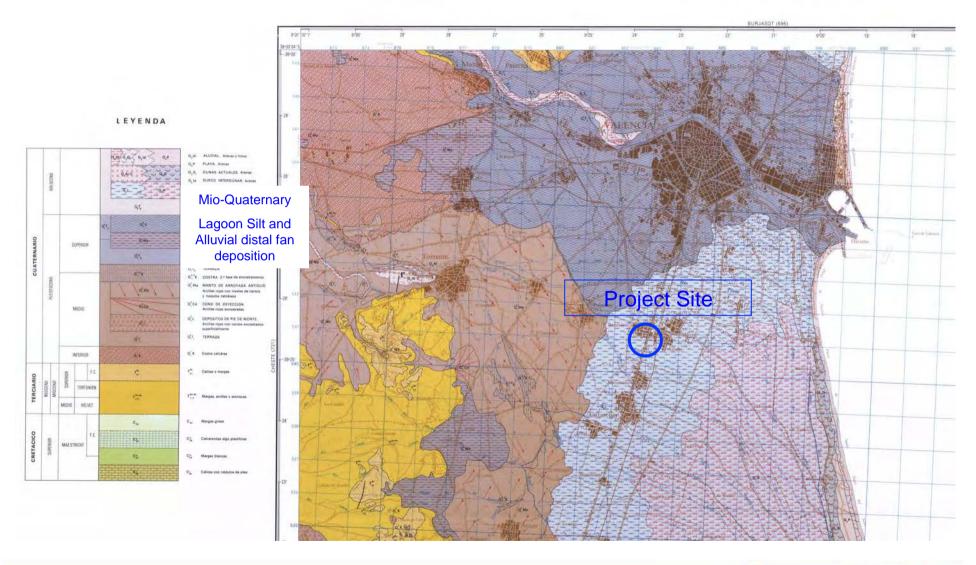
OPEN LOOP GSHP IN VALENCIA



	VOLUMEN CAPTADO (m3)		
	Refrigeración (m³)	Calefacción (m³)	Total (m³)
Enero	1.159	21.935	23.095
Febrero	1.619	18.185	19.804
Marzo	2.058	12.031	14.089
Abril	4.485	6.355	10.839
Mayo	13.009	2.556	15.565
Junio	32.756	1.662	34.418
Julio	52.748	1.313	54.062
Agosto	55.549	1.250	56.799
Septiembre	40.261	1.310	41.571
Octubre	18.450	2.171	20.622
Noviembre	2.946	9.019	11.965
Diciembre	2.475	21.153	23.628
Cobertura sistema IG	227.515	98.941	326.456

Tabla 4. Volumen captado

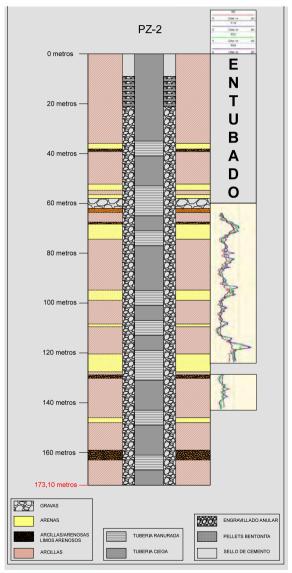
Figura 2 Volumen mensual captado



OPEN LOOP GSHP IN VALENCIA

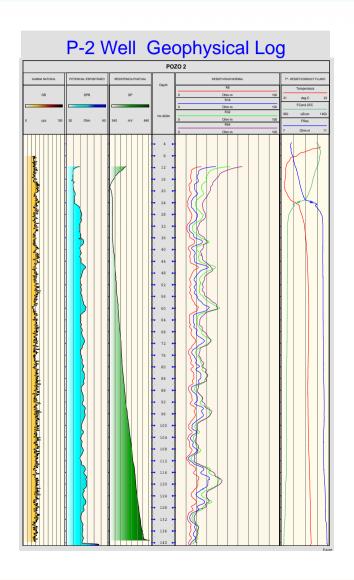
E. 1:50.000

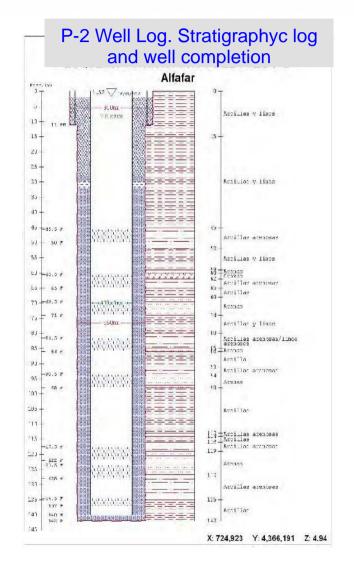
INSTITUTO GEOLOGICO Y MINERO DE ESPAÑA



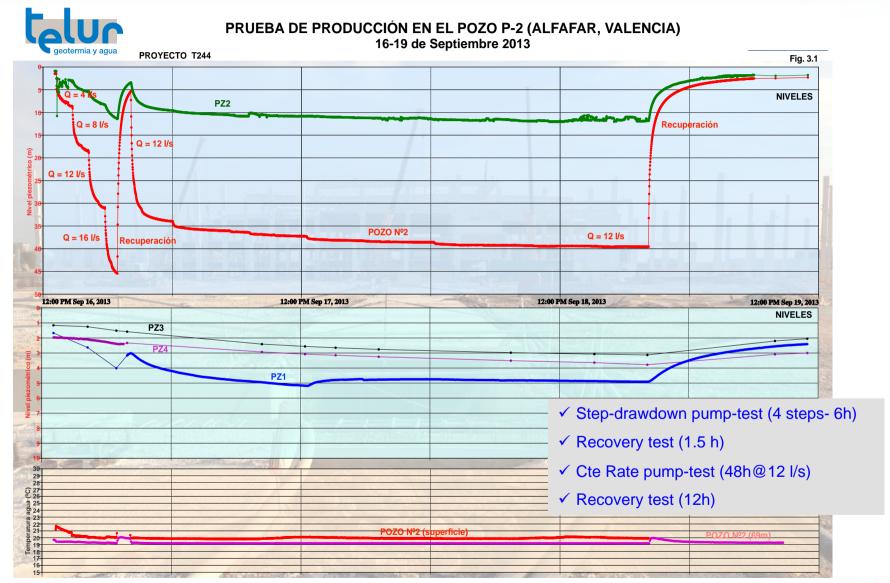
PZ-2 EXPLORATION DRILLHOLE

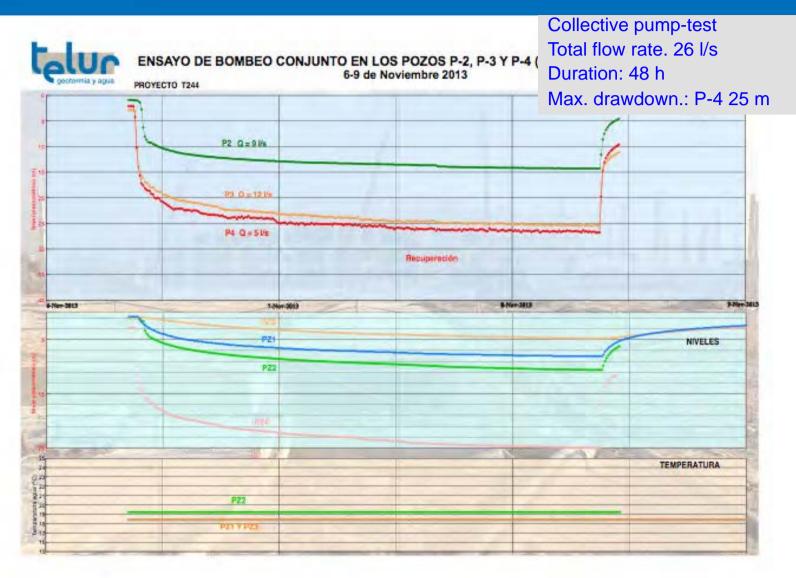
P-2 WELL DRILLING WORKS





P-2 WELL DRILLING WORKS




P-2 Pumping test

PRODUCTION TEST P-2+P-3+P4

PRODUCTION TEST P-2+P-3+P4

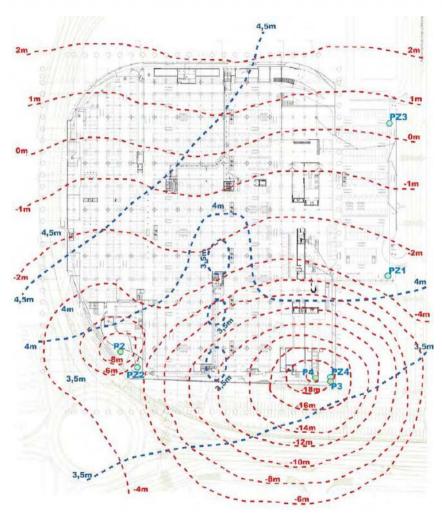


Fig 2.4.- Isopiezas iniciales (en azul) y finales (en rojo) en el Bombeo Conjunto de los pozos P-2, P-3 y P-4

CONSIDERACIONES FINALES

- ✓ Los sistemas de IG, bien ejecutados y correctamente operados, continúan siendo, 20 años después del estudio de la EPA, la tecnología de climatización de edificios, y de producción de agua caliente, mas ecológica y menos contaminante;
- ✓ Las experiencias realizadas en nuestro entorno confirman sus rendimientos siempre y cuando los sistemas sean diseñados, ejecutados y operados con el elevado rigor que requieren. La baja calidad de las instalaciones es la principal amenaza de esta tecnología.
- ✓ Son especialmente recomendables en la rehabilitación de instalaciones térmicas de producción donde las demandas son conocidos
- ✓ Idóneos para hibridar con biomasa y/o solar térmica
- ✓ Existen soluciones tipo ESE que permiten asegurar el funcionamiento de la instalación, involucrando al ejecutor, con buenas condiciones de financiación.

Muchas gracias

GP/Aliendalde Auzunea, 6 48200 Durango · Bizkaia T: 94 6818916 www.telur.es

